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Abstract. Using the method of few-body physics, the states of the barrier D− centre, which
consists of a positive ion located on the z-axis at a distance from the two-dimensional quantum dot
plane and two electrons in the dot plane bound by the ion, are investigated in a arbitrary strength
of magnetic field. This configuration was called a barrier D− centre. Discontinuous ground-state
transitions induced by an external magnetic field have been obtained. The dependence of the
binding energy of the ground state of the barrier D− centre on the dot radius for a few values of
the magnetic field strength is obtained.

1. Introduction

Recently, advances in nanofabrication technology have made it possible to manufacture
quantum dots (QD’s) containing one, two and more electrons, and these have been intensively
investigated experimentally and theoretically. A QD is semiconductor nanostructure with
a three-dimensional confinement of electrons [1]. They have been fabricated in different
shapes; for example, a disk-like (cylindrical) shape [2] and a spherical shape [2, 3]. From
a theoretical point of view, these few-body systems represent a challenging problem. The
standard tools of the condensed-matter physicist, such as the many-body techniques relying
on Hartree or Hartree–Fock approximations are often not sufficient, since the exchange and
correlation energies can be far from negligible [4]. A fully quantum mechanical treatment
is needed. An example is the problem of a strictly two-dimensional D− centre QD in the
presence of a perpendicular magnetic field. This centre consists of a single positive ion and
two electrons which are bound to the positive ion. It is analogous to a negative hydrogen ion
H− [5]. D− centres are one of the simplest ‘many-body’ electronic systems, which cannot be
solved exactly. They can be used as a test for the theoretical description of electron–electron
interaction [6].

Since the existence of a D− in centre-doped GaAs/AlxGa1−xAs multiple quantum wells
was first reported by Huant et al [7], many experimental [8–10] and theoretical [11–17]
investigations for negative donors in quantum wells, quantum dots with and without magnetic
fields, have been carried out.

A system in which two electrons confined to a parabolic QD are bound by a positive ion
located on the z-axis at a distance d from the dot plane is called a barrier D− centre QD. There
has been interest in the subject lately. Rich electronic structures and optical properties, and a
variety of structural phase transitions are predicted in such systems. Recently some authors
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[18] have studied the states of a strictly two-dimensional barrier D− centre at high magnetic
fields.

In this paper, we will propose a procedure to diagonalize the Hamiltonian of the barrier D−

centre in QD’s with a parabolic lateral confining potential in an arbitrary strength of magnetic
field by using the method of few-body physics. The low lying energy levels as well as the
ground state electronic structure are calculated systematically as a function of magnetic fields
of arbitrary strength. As a consequence of our calculations, it is found that the ground state
transitions of the barrier D− centre occur as the magnetic fields increase. The dependence of
the binding energy of the ground state of the D− centre on the dot radius for a few values of
the magnetic field strength is obtained. We find that there exists a critical radius Rc, such that
if the dot radius R < Rc (R > Rc) the D− configuration is stable (unstable).

2. Theory

The Hamiltonian for the barrier D− centre QD in the effective-mass approximation when the
magnetic field is applied perpendicular to the x–y plane is given by

H =
∑
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where �ri ( �pi) is the position vector (the momentum vector) of the ith electron originating from
the centre of the dot, m∗

e is the effective mass of an electron, r12 = |�r1 − �r2| is the electron–
electron separation, ω0 is the strength of the confinement, g∗ is the effective Lande factor, µB

is the Bohr magneton, Sz is the z-component of the total spin and d is the distance between the
fixed positive ion on the z-axis and the dot plane. In this work we have used the natural units
of the material: the effective Bohr radius a∗

B = h̄2ε/m∗
ee2 as the length unit and the effective

Rydberg Ry∗ = m∗
ee4/h̄2ε2 as the energy unit. With the symmetric gauge for magnetic field

�A = (B/2)(−y, x, 0), the Hamiltonian then reads
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where ω =
√

ω2
0 + ω2

c/4, ωc = eB/(m∗
ec) is the cyclotron frequency and L is the total orbital

angular momentum along in the z-direction.
Introducing the coordinates

�r = �r12 = �r1 − �r2 �R = (�r1 + �r2)/2 (5)

then equation (1) can be rewritten as
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e ; and µ = m∗

e/2.
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(a)

(b)

Figure 1. Variations of the energy levels (in units of Ry∗) of L as a function of the magnetic
field: (a) S = 0; (b) S = 1. The numbers in the figures label the angular momentum of the state.
Parameters are taken appropriate for GaAs, h̄ω0 = 0.5Ry∗, d = 10 nm.

The eigenstates of the barrier D− centre QD can be classified according to the total orbital
angular momentum of the electrons along the z-direction and the permutation symmetry
of the spatial wave functions upon interchange of electron coordinates (single and triplet,
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(a)

(b)

Figure 2. The same as figures 1 except for d = 0.

corresponding to symmetric and antisymmetric space wave functions, respectively). To obtain
the eigen-function and eigen-energies, we diagonalized H in a model space spanned by the
translationally invariant harmonic product bases

![K] = Ã{[φn1%1(
�R)φn2%2 (�r)]LχS} (8)
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where χS = [ξ(1)ξ(2)]S , ξ(i) is the spin state of the ith electron and the spins of two electrons
are coupled to S, φn%(�r) is a two-dimensional harmonic oscillator state with frequencies ω

and an energy (2n + |%| + 1)h̄ω, and Ã is the antisymmetrizer. [K] denotes the whole set of
quantum numbers (n1, %1, n2, %2) in brevity, %1 +%2 = L is the total orbital angular momentum.
The angular momentum L = odd if the spin S = 1, and L = even if S = 0 such that the
wave function is antisymmetried. The matrix elements of H are then given by the following
expressions:

〈![K]|H0|![K ′]〉 = [2(n1 + n2) + |%1| + |%2| + 2 + 1
2 ωcL − g∗µBBSz]h̄ωδ[K][K ′] (9)
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B[K][K ′] =
∫

![K]( �R, �r)![K ′]( �R′, �r ′) d �R d�r (14)

where Rn%(�r) is the radial part of two-dimensional harmonic oscillator function and B[K][K ′]
is the transformation bracket of two-dimensional harmonic product states with two different
sets of coordinates, which allows us to reduce the otherwise multi-integral into a single-
integral. Non-vanishing B[K][K ′] occurs only when both the states ![K]( �R, �r) and ![K ′]( �R′, �r ′)
have exactly the same eigen-energy and eigen-angular momentum. The analytical expression
for B[K][K ′] has already been derived in [19]. The set of canonical coordinates ( �R′, �r ′)
are defined by �r ′ = �r1, �R = �r2. The dimension of the model space is constrained by
0 � N = 2(n1 + n2) + |%1| + |%2| � 24. If N is increased by 2, the ratio of the difference in
energy is less than 0.001%.

3. Numerical results

Using m∗
e = 0.067me (me is the free-electron mass), h̄ω0 = 0.5Ry∗, d = 10 nm and ε = 12.4

for GaAs QD’s, we calculated the energy spectrum of low lying states with L � 8. In figure 1,
we plot the energies of the barrier D− centre QD as a function of the external magnetic field B

separately for S = 0 and S = 1. It is clear that Coulomb attraction terms in the D− Hamiltonian
decrease in strength as d increases, whereas the electron–electron repulsion term is independent
of d. Thus, at larger values of d , the repulsion becomes relatively more important, and the
electrons can lower their energy most effectively by forming highly correlated states in which
they are well separated in position. Hence, it is the competition between the single particle
energy and the interaction energy that finally determines the total energy. The existence of the
Zeeman term ωcL/2 (negative) makes it possible for states with larger L to be even lower in
energy than those with smaller L. As a result, the lowest state for a given spin configuration
occurs at larger L as the magnetic field increases. However, the transition is strictly restricted
to occur between two even numbers of L for S = 0 and two odd numbers of L for S = 1, as
in the case of a two-electron QD [20].

It is interesting to calculate the d → 0 case because the qualitative nature of the lowest-
lying D− states will change with decreasing values of d. Coulomb attraction terms in the
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Figure 3. Dependence of the binding energy EB(D−) on the QD radius R normalized by the
effective Bohr radius a∗

B with d = 0 is plotted.

Figure 4. Dependence of the binding energy EB(D−) on the distance d (in units of nm) from the
QD plane with h̄ω0 = 1.0Ry∗ is plotted.

D− Hamiltonian decrease in strength as d increases, whereas the electron–electron repulsion
term is independent of d . Thus, at lower values of d, the attraction becomes relatively more
important. Correlation between electrons is relatively weak in the bound d = 0 eigenstates.
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The calculation shows that at d → 0 the ground state transition cannot occur (see figure 2).
The ground state of the D− centre QD is always the 1S state, i.e., the state of L = 0 and S = 0.

We define the binding energy of the negative donor as

EB(D−) = E(D0) + E0 − E(D−) (15)

where E(D−) is the D− ground-state energy in the QD’s and E0 and E(D0) are, respectively,
the lowest levels of an electron in the QD’s without and with the Coulomb potential. The
dependences of EB(D−) on the dot radius R with d = 0 for a few different values of magnetic
fields are plotted in figure 3. The binding energy reduces as the dot radius is increased.
However, the binding energy of the ground state of D− centre QD’s in lower magnetic fields
reduces with increasing the dot radius R more rapidly than in higher magnetic fields. As shown
in figure 3, the binding energies of D− centre QD’s increase with increasing magnetic field B.
Hence, the binding energies of D− centre QD’s in a magnetic field are strongly dependent on
the confined strength and the strength of the magnetic field.

It is clear that as d increases from zero, the attractive interaction responsible for binding
decreases. However, the binding energy of the D− centre in QD depends on the difference
between the energy of the D− centre and that of the neutral donor (D0) left behind when one
electron is removed from the D− ion. Both the total (two-electron) binding of the D− ion and
that of the D0 decrease as d increases. The pertinent question is which decreases fastest. In
figure 4, we plot EB(D−) versus d for the magnetic fields B = 0, 5, 10 T with h̄ω0 = 1.0 Ry∗.
It is readily seen that EB(D−) decreases with increasing d, but it reaches a maximum at around
d ∼ 1 nm. When d increases further, EB(D−) drops to zero. This indicates that no bound
state exists for the barrier D− QD at d > 5 Å.
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